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Abstract

This paper suggests a possible infrastruc-
ture that can be used to build a cognitive ar-
chitecture, combining several principles that
appeared through evolution. Anticipation,
regulation and coordination of interactive pro-
cesses are used to produce goal-oriented be-
haviors, illustrated by a navigation applica-
tion. Implications of the model for the phylo-
genesis to ontogenesis transition are discussed
and a learning algorithm is presented as a per-
spective.

1. Introduction

Our work is mainly inspired by the Interactivist
framework (Bickhard, 1993, Bickhard, 1996), which
itself takes its roots in Piaget’s constructivism
(Piaget, 1952). It promotes a naturalistic and evo-
lutionary approach which requires a drastic shift
from a particle to a process metaphysics. We
are also very interested in the Enaction paradigm
(Varela et al., 1993), especially in the notion of life
as based on conservation and adaptation of the or-
ganization through autopoiesis.

The main principles appearing during species
evolution that we retain in this paper are self-
maintenance through continuous regulation, syn-
chronization with the environment, anticipation of
the consequences of actions and coordination of
processes (Quinton et al., 2008). Activity is nec-
essary and central, in that only action and an-
ticipation provide a normative knowledge with
a direct epistemic contact with the environment
(Bickhard and Christensen, 2002).

In the following model, knowledge, confidence or
beliefs are all based on activity, as a synthesis of
internal and external dynamics. Our approach can
therefore be assimilated to situated and distributed
dynamical systems or complex systems. Jun Tani
detailed the theoretical and practical advantages
of such approaches using recurrent neural networks

(Tani, 2003). Similarly, the dynamic systems ap-
proach advocated by Esther Thelen from a psycho-
logical point of view reflects the same preoccupations
(Thelen and Smith, 1994).

2. Implemented model

The computer-implemented model described in the
following sections takes advantage of the previ-
ously cited principles to simulate a cognitive agent.
Whether the agent is a robot acting in the physical
world or a program communicating with a virtual en-
vironment, it interacts through a perception/action
interface. All inputs and outputs must take real val-
ues but might be simple commands for rotating a
given joint as well as complex features extracted from
the optical flow.

2.1 Space

To integrate all information in one single homoge-
nous system, we use a generic vector space whose
dimensions correspond to the various perceptions
and actions (Quinton and Inamura, 2007). To model
higher functions of cognition and reflexivity, addi-
tional dimensions may be internally added during
the agent’s lifetime. In our model, all dimensions are
derivative from the innate structure and interface of
the agent’s body. Still, the constructed dimensions
may be associated with abstract processes, weakly
coupled with the environment.

2.2 Interaction state

The basic elements or building blocks of the cogni-
tive agent are single point states in any subspace
of the previously described vector space. Addition-
ally, an activity level is associated to each of these
points. The more dimensions are set, the more spe-
cific is a state, corresponding to a particular or even
unique event. Comparing states involves computing
on their defined dimensions, thus defining a local en-
vironment based on the particular subspace. Com-



xd

a
2

a

x

y

1s

2s

(a)

strongly
assimilated

assimilated
weakly

source

(b)activity

Figure 1: A 2D state defined by its x and y dimensions

propagates its activity. Though the propagation is theo-

retically infinite, activity rapidly drops down, depending

on the mean propagation distance d. Whatever are d or

the source activity a, another state close to the source

will be better assimilated than a further point, assuming

Piaget’s terminology.

mitting with a process metaphysics, states are not
inert particles but interact with their local environ-
ment through an activity field. This field is repre-
sented on figure 1(a) for a two dimensional state.
The equivalent effect from state s1 to s2 along di-
mension x is also plotted (b) and is defined by the
propagation function in equation 2 where a is the
source activity from s1. The similarity function used
is defined by the following sigmoid where the expo-
nential argument coefficient of 5 is functional but
arbitrary:

sim(s1, s2) = 1− 1

1 + e
−5

(
|s2−s1|

d −1
) (1)

p(s1, s2) = a ∗ sim(s1, s2) (2)

Extending this equation to multidimensional
states si in subspaces Si, the sigmoid is applied on
the intersection subspace

⋂
i Si. As mentioned in the

previous section, the interaction activity level, ab-
stracting its input dimensions into one real value, can
then be used as another dimension, undistinguish-
able from the original ones.

Our non classical approach is to merge perception
and action in a single interactive state, then combin-
ing such points in an emergent dynamical system,
interpolating actions as well as perceptions. The
states and propagated activities continuously shape a
global dynamical landscape which defines the agent’s
behavior.

2.3 Anticipation

What is called an anticipation is a special kind of
interaction which gets part of its inputs from a dis-
tant state point, from which a simple diffusion would
not bring any activity given the standard d param-
eter (see figure 1). To put it differently, anticipa-
tions are like instantaneous shortcuts in the activity
landscape, spreading activity over large distances.
The source and target states are in general in dif-
ferent subspaces. Using common usage terminology,
an equivalent formulation for the most useful antici-
pations subclass would be: given the perceptive sit-
uation p1, the actions a1 will (certainly) lead to pre-
dicted situation p2. The exact same anticipation can
be defined as [p1, a1] → [p2] or [s1] → [s2].

These pieces of knowledge can therefore be ei-
ther passive as for an observer looking at a falling
ball (”I’m here and will be there in the interaction
space”) or active as when pushing on something and
anticipating the object touch feedback (”I’m doing
that here and will go there”). Combining activities
propagated to their source and target interactions
(equation 3), these anticipations disturb the homo-
geneity of a state space else exclusively composed of
interactions. The computations involved to integrate
all the propagated activities represented on figure 2
at both ends of the anticipation arrow are detailed
in equations 4 and 5.

a = (1− α)× asrc + α× atgt (3)

where α ∈ [0; 1] determines the trade-off between
reactivity and anticipation in the system.
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Figure 2: An anticipation integrates and propagates var-

ious activities. The figure focuses on one anticipation

(black arrow), though all activities are updated in paral-

lel. Dashed arrows represent activity propagation to and

from the central anticipation. For instance, all antici-

pations (grey arrows) back-propagate their activity de-

pending on the distance between their initial situation

and target situation of other anticipations (attraction).



asrc = max
s∈M

⋃
A

p(s, src) (4)

atgt = max
s∈P

p(s, tgt) (5)

with M the set of top-down modulating activities,
A the set of back-propagated activities from others
anticipation sources and P the set of bottom-up per-
ceptual activities.

These future oriented anticipations, by defining
the direction of time, also break a deadly symme-
try for the system, otherwise ineluctably reaching
equilibrium states, no more differentiating perceived
situation and anticipations. Without such elements,
we need to split propagated and back-propagated ac-
tivities, losing many immediate properties. Then
we would also need to solve the classical dualistic
problem of top-down and bottom-up integration at
a global scale, where local activities are meaningless.

Given the constraints on the merging, integration
and propagation functions provided below (of course
verified by the previously introduced functions), ac-
tivity can be trivially demonstrated to never diverge
outside its initial range, anywhere in the interaction
space (by combining the equations to determine an
upper bound for the positive activity).

∀(s1, s2) ∈ I2, p(s1, s2) ≤ as1 (6)

∀a ∈ A, asrca
≤ max

s∈I
p(s, srca) (7)

∀a ∈ A, atgta ≤ max
s∈I

p(s, tgta) (8)

∀a ∈ A, aa ≤ max (asrc, atgt) (9)

where A is the set of anticipations and I the set of
propagated interaction states.

2.4 Layer

This additional concept is not mandatory for the sys-
tem to work correctly but useful to limit the com-
plexity of interactions. Although we will use layers of
interactions in the rest of the paper, the reader may
keep in mind that a single layer with distant highly
connected clusters is almost equivalent. Indeed, lay-
ers can be modeled by an additional dimension with
specific anticipations replacing modulations between
layers.

The further the layers are from the environment in
terms of the anticipation path linking interactions,
the more abstract and stable they are. Since they
are loosely coupled with the environment, they do
not depend on its fast and chaotic fluctuations (as
in the optical flow), but rather rely on slow paced
internal activity integrating lower level features.

extremal paths
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Figure 3: Collapse algorithm applied on three 2D an-

ticipations. For each dimension, a barycenter is com-

puted between anticipations with this dimension de-

fined. Though an infinite number of paths is possible

between anticipations a2 and a3, the resulting anticipa-

tion is strongly biased due to an attractor activity back-

propagated towards a3. As time passes, a3 will increase

its own assimilation of the situation, its activity and thus

its influence on the taken actions.

2.5 Promoted actions

As stated before, perceptions and actions are entan-
gled, and the resulting activity propagated by an-
ticipations produces a field of activity shaping a be-
havioral landscape. Still when interacting with the
real world, this superposition of potentialities has to
be instantiated by unique and precise actions. To
achieve it, all anticipations from a layer are collapsed
into a single one by using a weighted sum pondered
by activity (figure 3). As long as the input activities
are continuous, the interpolation performed guaran-
tees a smooth trajectory.

The resulting anticipation provides both the be-
lieved current situation and a target interaction state
used to modulate lower layers. This target state
keeps the agent moving towards attractors and future
interactions by definition. The modulation interpo-
lated at the lowest layers leaves the internal milieu
of the agent’s mind to be applied on the external dy-
namics. The system therefore dissolves the so called
symbol grounding problem by propagating activities
which only have meaning relatively to the local en-
vironment of interactions.



3. Navigation application

This application introduces a metaphor between
physical paths and networks of anticipations that il-
lustrates some underlying properties of the model.
First of all, the simple fact that an agent can go by
plane to London is not interesting if not her final des-
tination. Suppose she lives in France and wants to
go to Japan, going through England is not the short-
est way. Yet it might be impossible to go directly
to Japan from her place and having a connection in
London might be the usual and even fastest way to
go there.

The agent then has to integrate different pieces
of knowledge to connect her flights. It is like read-
ing personalized traffic signs with heuristic weights
recursively computed depending on your final desti-
nation. This exact behavior is an emergent feature
of the described model, propagating a higher activ-
ity in areas leading to goals through a sequence of
known anticipations.

Figure 4: Graphical interface of the navigation program.

The interaction space only possesses a minimal number of

dimensions and a small set of anticipations for interesting

behaviors to emerge. Though there might be more than

screen coordinates dimensions, the interface only repre-

sents a 2D projection of the higher dimensional space.

The navigation layer (left panel) modulates the motor

layer (right panel) that interacts directly with the simu-

lated environment. Perceptions are represented as yellow

dots whereas modulations appear as green dots.

3.1 1-layer version

This first version is only introduced to show the
limitations resulting from a single layer regula-
tory system. Anticipations can be represented as
[x1, y1,∆x1,∆y1] → [x2, y2,∆x2,∆y2]. Cartesian
coordinates serve for both perceptions (x,y) and ac-
tions (∆x,∆y). Though these are not at all realistic
dimensions for biological systems, they may still be
grounded in robotic devices. A brief introduction to
a more realistic perception using a similar model is
given in (Basille et al., 2007).

At launch, though no special algorithm is imple-
mented, an initialization phase of the interaction
space takes place. Random initial activities rapidly
converge to form a stable landscape synchronized
with the environment. Only a few update cycles are
necessary to spread activities through the entire net-
work since propagation is instantaneous.

The internal and external dynamics then continu-
ously interact through interpolated actions and per-
ceptions, roughly following the oriented loop trajec-
tories formed by the anticipations (as shown on fig-
ure 4 upper panel). This kind of large scale and long
term anticipations are indeed only roughly satisfied
since an interpolation of actions at this level is not
powerful enough to provide a fine regulation on each
effector.

3.2 2-layer version

Though the previous version exhibits a rough ap-
proximation of the targeted behavior, an additional
layer is needed to improve the results. Two layers
are therefore introduced and interconnected through
modulation and perception. A navigation layer com-
prises positional anticipations of possible moves like
[x1, y1] → [x2, y2] and a motor layer is composed
of anticipations in direct relation with the environ-
ment such as [x1,∆x1] → [x2,∆x2] or [y1,∆y1] →
[y2,∆y2].

The reader akin to constructivist theories may no-
tice that the motor layer anticipations are more gen-
eral than those from the navigation layer in that they
are likely to be applicable on a wider range of situa-
tions and satisfied more often. Yet at the same time
they are more specific in the sense that they deal with
simple movements and a single dimension (adopting
a more neuroscientific definition of specialization).

The inter layer modulation supplies the motor
layer with a reachable target position as long as the
navigation network is synchronized with and adapted
to the environment. It bridges the gap between the
different domains and scales on which the layers op-
erate. Moreover, even if the x and y dimensions are
directly mapped between layers here, the navigation
layer may modulate any number of arbitrary joint
specific layers. Thus the system can exhibit flexible



and complex regulations as well as provide a first
step towards generalization and body abstraction.

3.3 Dynamical goals

The main advantage of the presented approach is its
implicit and continuous coordination of the anticipa-
tions. The most significant outcome is the possibility
to have dynamical goals without having anything else
to do than just changing or adding modulations at
runtime. The modulation dynamics may be deter-
mined by another layer, the human user or even the
environment with some kind of ”virtual hormone”.

The interaction space of figure 4 is coupled with
its environment by standard perceptions and actions
plus two modulations signals (displayed on the sides
of the upper panel). The produced trajectories can
be assimilated to those of the Lorentz’s strange at-
tractor, the missing dimension being the perception
the modulation signals affect. The system keeps
looping on one side until the fragile equilibrium be-
tween the two modulations has been reversed, the
transition always taking place near the central im-
plicit connection.

The way we articulate the simultaneously incom-
patible chewing, swallowing and breathing behaviors
is a good biological example of such cycles and al-
ternations. Though these actions seem trivial to us,
they involve complex regulations depending on the
texture of food, earlier physical efforts or even poten-
tial throat pain preventing the eater from swallowing
as always.

4. Discussion

4.1 Comparison with existing approaches

The approaches referenced below have been selected
as they share a lot of similarities with the model
developed in this paper. Yet none of them in our view
is equivalent nor implement full implicit coordination
and regulation principles.

For instance, artificial recurrent neural networks
for navigation and movement control (Tani, 1996)
are also based on spreading activity but lack the
structure flexibility resulting from local diffusion.
The same difference exists with the hierarchical tem-
poral memory model (Hawkins and Blakeslee, 2005).
However, it not only uses activity as a unified form
of representation, but also computes activities based
on anticipation sequences. Similarly, interconnec-
tions between modules in the subsumption architec-
ture need to be finely tuned (Brooks, 1999). Sev-
eral other approaches are based on the coordina-
tion of processes but rely on explicit communication.
Such approaches include the Polyscheme architec-
ture (Cassimatis, 2005) or cooperative multi-agent
system theories (Camps et al., 1998).

Compared to internal model based architectures
(Haruno et al., 2003, Kawato, 1999), our behaviors
are regulated at the emergent network level rather
than relying on inner corrections of the forward and
backward models. Interactions have no direct regu-
latory effect outside the field of their own perceptions
and actions. Finally, partially observable Markov de-
cision processes and equivalent statistical models are
by essence sequential rather than parallel, taking a
totally different perspective on phenomena.

4.2 Properties of the model

Since fundamental properties of the model are
highly resistant to parameter variations and equa-
tion changes, basic elements can be easily extended
with additional features. Integration over time for
example improves robustness by simply adding an
inertial factor in the merging equation. Though it
might seem surprising or contradictory to the reader,
the resulting oscillations represented on figure 5 also
improve stability.

Time is not directly measurable as a mind ”in-
put” contrarily to many sensations. Moreover
the difference has to be made between physical
time (for example needed for neural propagations)
and psychological time as perceived by the subject
(Dennett, 1996). In our model, timing comes from
the coupling with the environment, thus deriving
from the laws of physics. Although adding an ad hoc
objective perception of time is unrealistic, a solution
coherent with the current model would be to synthe-
size central pattern generators by using bidirection-
ally coupled inertial anticipations. Combined with
the current model, they could simulate rhythmic
movements with an appropriate timing (Kuo, 2002).

In addition to the implicit time representation,
several other aspects in our model are supported

(a) (b)

time

increasing inertia

interpolated value/action

Figure 5: Behavior of an inertial anticipation. (a) When

the inertia factor β added to equation 3 (at = (1 − α −
β)×asrc +α×atgt +β×at−∆t) increases in a low range,

the system constantly probes the surroundings of any

equilibrium point and oscillates around it, generating in-

formative activity variations for the network. (b) Repre-

sentation of the two concurrent anticipations interacting

and promoting the action/position plotted on the left

curve.



by experimental data in neuroscience. More specif-
ically, the model might provide a plausible approx-
imation to neuromodulation (Dehaene et al., 2006),
brain wave synchrony (Engel et al., 2001), motiva-
tion concepts (Berridge, 2004), cortical layers hier-
archy (Hawkins and Blakeslee, 2005) or mirror neu-
rons (Rizzolatti et al., 2001).

Delimiting highly connected specific sub-networks,
layers are an attempt to find a golden mean between
pure modular integrative systems and giant homoge-
nous networks. A full body motion is indeed required
to compensate a single limb movement and keep bal-
ance, but this global regulation can be distributed
between specific local networks. Though all interac-
tions are more or less indirectly connected, they only
strongly impact on a subset of dimensions.

More than just embedding regulations, the core of
the model also accounts for goal-oriented behaviors.
Interactions partially assimilating the environment
or modulations but unable to satisfy their anticipa-
tions will continuously influence their surrounding
network to be fully satisfied. With such a definition
of goals and converging with recent researches in the
domain (Oudeyer et al., 2007, Schmidhuber, 2006),
an agent will develop curiosity for non totally as-
similated situations but no interest at all in non as-
similable situations.

Redundancy, rather than being a nuisance to be
avoided or eliminated, improves the efficiency of the
system. Since only the maximal propagated activ-
ity is integrated into an anticipation (equation 4 and
5), redundant anticipations have no effect on the ac-
tivity landscape but will have more influence on the
promoted actions if correctly assimilating the situa-
tion. This point is of great importance when the sys-
tem cannot create any arbitrary compounds or when
compounds cannot be aware of the global emergent
function realized by the system (as for neurons rela-
tively to the whole brain for instance).

In our model, there is an almost perfect symme-
try between perceptions and actions, both are funda-
mentally entangled (partially accounting for mirror
neurons interpretations). Yet there is also another
symmetry between external and internal activities,
both almost identically interacting with the network.
Though the following reasoning may be adapted to
hallucinations or dreams, we will describe a particu-
lar kind of optical illusions, namely perceptual filling-
in. When a texture is partially erased but the rubbed
out part is exactly projected on the blind spot of the
retina by fixating a particular point, its seems like
the human brain completes the pattern, whatever
may be its complexity. Though the observer might
perfectly acknowledge that his senses are deceiving
him, the texture is perceived in its integrality. The
brain does not really complete anything from our
point of view, since perception is merely based on

internal activity. Still, in the absence of visual sen-
sations, anticipations only integrate back-propagated
activity and modulations. Low level visual anticipa-
tions compatible with the surrounding pattern get an
activity boost not overwhelmed by real sensations,
therefore propagating the belief of a full texture to
higher layers as consciously experienced.

Finally, though perception and action have sym-
metric roles, a distinction must be made between
generation and recognition. Because activity and
timing are provided by the environment during
recognition, the internal dynamics can easily syn-
chronize on any previously learned pattern. Though
the structure and organization of the anticipations
may not be different, generating the same pattern by
only integrating modulation signals is unlikely. Only
the most usual patterns that shaped the layer emerge
from the spontaneous inner propagation of activity.
Even if our model concentrates on low-level cogni-
tion, a similar gap exists between understanding and
speaking abilities in the language domain.

4.3 From phylogenesis to ontogenesis

To focus the discussion on the specific theme of
the conference, this section deals with the relations
between behaviors inherited from phylogenesis and
skills acquired during life. Firstly, we consider that
learning appeared during evolution to allow organ-
isms to adapt to their no longer genetically pre-
dictable environment. Indeed, an increasing number
of possible interactions between an organism and its
environment results in an infinitely more complex
perceptual world.

Even if this aspect has not been emphasized in this
paper until now, anticipations can be learned and
confirmed by probing actions on the environment
and verifying the satisfaction of the consequences.
Even if such a mind was initially blank, the cou-
pling with the physical body would rapidly gener-
ate a large number of passive anticipations. Reflexes
and metabolism already provide a huge quantity of
survival information selected through evolution, thus
defining the laws governing the immediate environ-
ment of the agent’s mind.

This basic set of anticipations could then progres-
sively be extended by constantly interacting with the
whole agent’s environment. When building anticipa-
tions mainly based on internal activity, the coupling
with the environment would get progressively weak-
ened though they would still be grounded in per-
ception and action. Depending on the development
context of each individual, unique networks of ac-
tivities would emerge. These would constitute stable
attractors for the internal dynamics and influence all
behaviors, defining habits, interests, obsessions, val-
ues and identity (Moreno, 2000). Trying to assimi-
late the situation at any time, they would apply if



not in direct conflict with stronger attractors. For in-
stance, behaviors totally useless for the survival such
as taping a rhythm with the foot, chewing some non
eatable thing or playing with a pen are common when
our limbs are ”free”. Similarly, humming a sound is
easy if not trying to talk or listen to other music.

This phenomenon might be correlated with the
evolution of brain plasticity during development. In
a baby’s mind, innate behaviors are hardly connected
and apply to different realms. Contradictory an-
ticipations can coexist as not consciously perceived
as such, since they are not linked with additional
knowledge increasing the coherence of the system.
Moreover almost everything is considered as new,
so anything not too challenging can be learned and
accepted. The behavioral dynamical landscape is
shaped by the stimulations. Afterwards, the older
the mind becomes the more structured and coherent
is the network. An adult has more remembrances,
masters more skills. On one hand, the interaction
network is more stable and resistant to noise, thus
the agent will be able to generalize situations cor-
rectly. On the other hand, it becomes harder to think
of a situation as novel, since it is always vaguely as-
similated to past experience. Thus accepting desta-
bilizing changes or learning totally novel fields (with-
out a lot of motivation, concentration and rehearsal)
is threatened by the overall stability of the mind.
Though change is always possible in such mathe-
matically chaotic systems, a subtle combination of
complementary successive influences is required.

Drives such as thirst, carefully selected by evo-
lution for the sake of the whole body (mainly for
the agent to be able to reproduce), are interacting
with learned processes. Therefore they take part in
the overall activity and indirectly influences cogni-
tive actions such as grasping a bottle of water (that
was not selected as good by evolution). In fact any
interaction or behavior, as long as it is not hinder-
ing highly active processes will just coordinate with
them. To put it differently, notions of goodness or
badness, usefulness or futility are not absolute. The
human drinking behavior has no immediate value
for a single cell absorbing water molecules through
its wall. As long as the environment provides the
necessary elements and functional interactions are
preserved, any self-maintenant system will just work
properly. Breathing machines can for instance keep
organs alive even after brain death.

We can draw a parallel between self-maintenant
far from thermodynamic equilibrium systems, or au-
topoietic systems (Varela et al., 1974), and closed
networks of interactions/anticipations. The pro-
moted actions keeps the agent within the network as
long as the environment remains in adequation. Al-
though most of the discussion remains hypothetical
and subject to experimental validation, it would be

scientifically simple and economic to have the same
principles range from the cell level to human cogni-
tion.

5. Conclusion and perspectives

The validity of the model now needs to be further
tested on larger scale problems. Introducing a learn-
ing mechanism similar to the one presented at Epi-
genetic Robotics 2007 is required in order to pro-
duce genuine anticipations from a basic set of in-
nate reflexes (Quinton and Inamura, 2007). A con-
fidence reinforcement algorithm may select anticipa-
tions with highly correlated activity in the assimila-
tion of the situation and in the satisfied target inter-
action. Such algorithm is however required to apply
synchronously on several levels and adapt to various
rhythms and scales. Moreover, due to the potential
huge number of learned anticipations and taking in-
tro account the sparsity of the interaction space vec-
tors, the optimizations implemented last year need
to be greatly improved.

Additional theoretical problems will certainly
appear before reaching the flexibility of human
level regulations as described by Merleau-Ponty
(Merleau-Ponty, 1963). Adapting our model to con-
trol a simple haptic device so it can learn and inter-
act in a real environment is however a first necessary
step. Extensively testing our hypotheses will hope-
fully help us to detect the flaws in our theories and
find the very principles underlying low-level cogni-
tion before going any further.

References

Basille, J.-L., Buisson, J.-C., and Quinton, J.-C.
(2007). Interactivist navigation. In Proceedings
of ECSC’07 - European Cognitive Science Con-
ference (Delphi, Greece), page 922. Lawrence
Erlbaum Associates.

Berridge, K. C. (2004). Motivation concepts in be-
havioral neuroscience. Physiology & Behaviour,
81.

Bickhard, M. H. (1993). Representational content
in humans and machines. Journal of Experimen-
tal and Theoretical Artificial Intelligence.

Bickhard, M. H. (1996). The emergence of repre-
sentation in autonomous embodied agents. In
AAAI Fall Symposium on Embodied Cognition
and Action.

Bickhard, M. H. and Christensen, W. D.
(2002). Process dynamics of normative function.
Monist, 85(1):3–28.

Brooks, R. A., (Ed.) (1999). Cambrian Intelligence
- The early history of new AI. MIT Press.



Camps, V., Gleizes, M.-P., and Trouilhet, S. (1998).
Properties analysis of a learning algorithm for
adaptive systems. International Journal of
Computing Anticipatory Systems, 1:223–233.

Cassimatis, N. L. (2005). Integrating cognitive
models based on different computational meth-
ods. In Proceedings of the Twenty-Seventh An-
nual Conference of the Cognitive Science Soci-
ety, pages 402–407.

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur,
J., and Sergent, C. (2006). Conscious, precon-
scious, and subliminal processing: a testable
taxonomy. Trends in Cognitive Sciences.

Dennett, D. (1996). Kinds of Minds: Toward an
Understanding of Consciousness. The Science
Masters Series. New York: Basic Books.

Engel, A. K., Fries, P., and Singer, W. (2001). Dy-
namic predictions: Oscillations and synchrony
in top-down processing. Nature Reviews, 2.

Haruno, M., Wolpert, D. M., and Kawato, M.
(2003). Hierarchical mosaic for movement gener-
ation. International Congress Series, 1250:575–
590.

Hawkins, J. and Blakeslee, S., (Eds.) (2005). On
Intelligence. Times Books.

Kawato, M. (1999). Internal models for motor con-
trol and trajectory planning. Current Opinion
in Neurobiology.

Kuo, A. D. (2002). The relative roles of feedfor-
ward and feedback in the control of rhythmic
movements. Motor Control, 6:129–145.

Merleau-Ponty, M. (1963). The Structure of Behav-
ior. Beacon Press, Boston.

Moreno, A. (2000). Closure, identity, and the emer-
gence of formal causation. Annals of the New
York Academy of Sciences, 901:112–121.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. (2007).
Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on
Evolutionary Computation.

Piaget, J., (Ed.) (1952). The Origins of Intelligence
in Children. International Universities Press.

Quinton, J.-C., Buisson, J.-C., and Perroto, F.
(2008). Anticipative coordinated cognitive pro-
cesses for interactivist and piagetian theories. In
Proceedings of AGI’08 - Artificial General In-
telligence (Memphis, USA), pages 287–298. IOS
Press.

Quinton, J.-C. and Inamura, T. (2007). Human-
robot interaction based learning for task-
independent dynamics prediction. In Proceed-
ings of EpiRob’07 - International Conference on
Epigenetic Robotics (Piscataway, USA), pages
133–140. Lund University Cognitive Studies.

Rizzolatti, G., Fogassi, L., and Gallese, V. (2001).
Neurophysiological mechanisms underlying the
understanding and imitation of action. Nature
Reviews Neuroscience, 2:661–670.

Schmidhuber, J. (2006). Developmental robotics,
optimal artificial curiosity, creativity, music, and
the fine arts. Connection Science.

Tani, J. (1996). Model-based learning for mobile
robot navigation from the dynamical systems
perspective. IEEE Trans. on Systems, Man, and
Cybernetics Part B: Cybernetics.

Tani, J. (2003). Symbols and dynamics in embodied
cognition: Revisiting a robot experiment. Antic-
ipatory Behavior in Adaptive Learning Systems,
pages 167–178.

Thelen, E. and Smith, L. B., (Eds.) (1994). A Dy-
namic Systems Approach to the Development of
Cognition and Action. MIT Press.

Varela, F. J., Maturana, H. R., and Uribe, R.
(1974). Autopoiesis: the organization of liv-
ing systems, its characterization and a model.
Biosystems, 5:187––196.

Varela, F. J., Thompson, E., and Rosch, E., (Eds.)
(1993). The Embodied Mind: Cognitive Science
and Human Experience. MIT Press.


	Introduction
	Implemented model
	Space
	Interaction state
	Anticipation
	Layer
	Promoted actions

	Navigation application
	1-layer version
	2-layer version
	Dynamical goals

	Discussion
	Comparison with existing approaches
	Properties of the model
	From phylogenesis to ontogenesis

	Conclusion and perspectives

